Global phase diagrams for freezing in porous media

نویسندگان

  • Ravi Radhakrishnan
  • Keith E. Gubbins
  • Malgorzata Sliwinska-Bartkowiak
چکیده

Using molecular simulations and free energy calculations based on Landau theory, we show that freezing/melting behavior of fluids of small molecules in pores of simple geometry can be understood in terms of two main parameters: the pore width H* ~expressed as a multiple of the diameter of the fluid molecule! and a parameter a that measures the ratio of the fluid-wall to the fluid–fluid attractive interaction. The value of the a parameter determines the qualitative nature of the freezing behavior, for example, the direction of change in the freezing temperature and the presence or absence of new phases. For slit-shaped pores, larger a values lead to an increase in the freezing temperature of the confined fluid, and to the presence of a hexatic phase. For pores that accommodate three or more layers of adsorbate molecules several kinds of contact layer phase ~inhomogeneous phases in which the contact layer has a different structure than the inner layers! are observed. Smaller a values lead to a decrease in the freezing temperature. The parameter H* determines the magnitude of shift in the freezing temperature, and can also affect the presence of some of the new phases. Results are presented as plots of transition temperature vs a for a particular pore width. Experimental results are also presented for a variety of adsorbates in activated carbon fibers ~ACF! covering a wide range of a values; the ACF have slit-shaped pores with average pore width 1.2 nm. The experimental and simulation results show qualitative agreement. © 2002 American Institute of Physics. @DOI: 10.1063/1.1426412#

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Thermal Dispersion Effects for Single and two Phase Analysis of Heat Transfer in Porous Media

The present work involves numerical simulation of a steady, incompressible forcedconvection fluid flow through a matrix of porous media between two parallel plates at constanttemperature. A Darcy model for the momentum equation was employed. The mathematical model forenergy transport was based on single phase equation model which assumes local thermal equilibriumbetween fluid and solid phases. ...

متن کامل

Multiscale Multiphysic Mixed Geomechanical Model for Deformable Porous Media Considering the Effects of Surrounding Area

Porous media of hydro-carbon reservoirs is influenced from several scales. Effective scales of fluid phases and solid phase are different. To reduce calculations in simulating porous hydro-carbon reservoirs, each physical phenomenon should be assisted in the range of its effective scale. The simulating with fine scale in a multiple physics hydro-carbon media exceeds the current computational ca...

متن کامل

A New Approach for Constructing Pore Network Model of Two Phase Flow in Porous Media

Development of pore network models for real porous media requires a detailed understanding of physical processes occurring on the microscopic scale and a complete description of porous media morphology. In this study, the microstructure of porous media has been represented by three dimensional networks of interconnected pores and throats which are designed by an object oriented approach. Af...

متن کامل

A Novel Approach to Measuring Water and Oil Relative Permeabilities in Two-phase Fluid Flow in Porous Media

In this study, direct laboratory measurements of unsteady-state imbibition test are used in a new approach to obtain relative permeability curves with no predetermined functionality assumptions. Four equations of continuity, Darcy’s law, cumulative oil production, and water fractional flow are employed in combination together under certain assumptions to present the new approach which interpret...

متن کامل

A Hybridized Crouziex-Raviart Nonconforming Finite Element and Discontinuous Galerkin Method for a Two-Phase Flow in the Porous Media

In this study, we present a numerical solution for the two-phase incompressible flow in the porous media under isothermal condition using a hybrid of the linear lower-order nonconforming finite element and the interior penalty discontinuous Galerkin (DG) method. This hybridization is developed for the first time in the two-phase modeling and considered as the main novelty of this research.The p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001